Encyclopedia > Biconditional introduction

  Article Content

Biconditional introduction

Biconditional introduction is the inference that, if B follows from A, and A follows from B, then A if and only if B.

For example: if I'm breathing, then I'm alive; also, if I'm alive, then I'm breathing. Therefore, I'm breathing if and only if I'm alive.

Formally:

  ( A → B )
  ( B → A )  
  ∴ ( A ↔ B )



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Bugatti

... road cars and its success in early Grand Prix racing, winning the first ever Monaco Grand Prix and with driver Jean-Pierre Wimille[?] they won the 1937 and 1939 24 hours of ...

 
 
 
This page was created in 48.5 ms