Encyclopedia > Beta function

  Article Content

Beta function

The Beta function, also called Euler integral of the first kind, is a special function defined by
<math>B(x,y) = \int_0^1t^{x-1}(1-t)^{y-1}\,dt</math>

The Beta function is symmetric, meaning <math>B(x,y) = B(y,x)</math>.

It has many other forms, including:

<math>\begin{matrix}B(x,y)&=&\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} \\
 &=& 2\int_0^\frac{\pi}{2}\sin^{2x-1}\theta\cos^{2y-1}\theta\,d\theta, & {\mathcal Re}(x)>0, {\mathcal Re}(y)>0\\
&=&\int_0^\infty\frac{t^{x-1}}{(1+t)^{x+y}}\,dt, & {\mathcal Re}(x)>0, {\mathcal Re}(y)>0 \\ &=&\frac{1}{y}\sum_{n=0}^\infty(-1)^n\frac{(x)_{n+1}}{n!(x+n)}, \end{matrix}</math>

where <math>(x)_{n}</math> is the falling factorial.

See also: Euler integral, falling factorial, Gamma function



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
East Marion, New York

... with no husband present, and 32.5% are non-families. 28.9% of all households are made up of individuals and 16.7% have someone living alone who is 65 years of age or ...

 
 
 
This page was created in 38.4 ms