Encyclopedia > Bernoulli inequality

  Article Content

Bernoulli inequality

Bernoulli's inequality in real analysis states that
<math>(1+x)^n\geq 1+nx</math>
for every integer n ≥ 0 and every real number x ≥ -1. If n ≥ 0 is even, then the inequality is valid for all real numbers x. The strict version of the inequality reads
<math>(1+x)^n>1+nx</math>
for every integer n ≥ 2 and every real number x ≥ -1 with x ≠ 0.

The inequality is often used as the crucial step in the proof of other inequalities. It can be proven using mathematical induction.

The following generalizations for real exponents can be proved by comparing derivatives: if x > -1 is non-zero, then

<math>(1+x)^r\geq 1+rx</math>
for r ≤ 0 or r ≥ 1 and
<math>(1+x)^r\leq 1+rx</math>
for 0 ≤ r ≤ 1.



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
French resistance

... arrived in August 24. Last Germans surrendered in August 25. In August 28 De Gaulle gave an order to dismantle Free French Forces and the resistance organizations. ...

 
 
 
This page was created in 25.4 ms