Using the intrinsic concept of tangent space, points P on an algebraic curve C are classified as non-singular or singular. Singular points include crossings over itself, and also types of cusp, for example that shown by the curve with equation X3 = Y2 at (0,0).
A curve C has at most a finite number of singular points. If it has none, it can be called non-singular. For this definition to be correct, we must use an algebraically closed field and a curve C in projective space (i.e. complete in the sense of algebraic geometry). If for example we simply look at a curve in the real affine plane there might be singular points 'at infinity', or that needed complex number co-ordinates for their expression.
The theory of non-singular algebraic curves over the complex numbers coincides with that of the compact Riemann surfaces[?]. Every algebraic curve has a genus (mathematics) genus defined. In the Riemann surface case that is the same as the topologist's idea of genus of a 2-manifold. The genus enters into the statement of the Riemann-Roch theorem.
The case of genus 1 - elliptic curves - has in itself a large number of deep and interesting features. For higher genus g some of those carry over to the Jacobian variety[?], an abelian variety of dimension g
Search Encyclopedia
|
Featured Article
|