Suppose in an argument one were to affirm the "then" part of a conditional (the consequent) first, and conclude with the "if" part (the antecedent).
This argument form has the name affirming the consequent, because in arguing this way one does indeed affirm the consequent in the second premise ("Q" is the consequent of the conditional claim, "If P, then Q"). This is a logical fallacy. If we argue this way, we make a mistake. One can see this with an example:
See also: modus ponens, modus tollens, denying the antecedent.
Search Encyclopedia
|
Featured Article
|