The transition state in a reaction is the point at which the original bonds have stretched to their limit. Transition states are only in existence for extremly brief (10-15 sec) periods of time. The energy required to reach the transition state is equal to the activation for that reaction. Multi-stage reactions involve a number of transition points, here the activation energy is equal to the one requiring the most energy. After this time either the molecules move apart again with original bonds reforming, or the bonds break and new products form. This is possible because both possibilities result in the release of energy (shown on the enthalpy profile diagram, Fig. 1, as both positions lie below the transition state). A substance that modifies the transition state to lower the activation energy is termed a catalyst; a biological catalyst is termed an enzyme.
At low temperatures for a particular reaction most, but not all, molecules will not have enough energy to react. However there will nearly always be a certain number with enough energy at any temperature, because temperature is a measure of the average energy of the system - individual molecules can have more or less energy than the average. Increasing the temperature increases the proportion of molecules with more energy than the activation energy, and consequently the rate of reaction increases. Typically the activation energy is given as the energy in kilojoules needed for one mole of reactants to react.
Search Encyclopedia
|
Featured Article
|