A function f is absolutely continuous if, <math> \forall \varepsilon > 0, \exists \eta > 0</math> such that for all list <math>(x_1, y_1, x_2, y_2, \ldots, x_n, y_n)</math> verifying <math>x_1<y_1 \leq x_2<y_2 \leq \ldots \leq x_n < y_n </math>, the following implication holds :
Any Lipschitz continuous[?] function is absolutely continuous.
Any absolutely continuous function is uniformly continuous and, therefore, continuous.
Search Encyclopedia

Featured Article
