For any <math> \epsilon > 0 </math> there exists a constant <math> C_{\epsilon} > 0 </math>, such that for every triple of positive integers a, b, c satisfying <math> a + b = c </math> and <math> \gcd(a,b) = 1 </math> we have <math> c < C_{\epsilon} rad(abc)^{1+\epsilon} </math>, where <math> rad(n) </math> is the product of the distinct primedivisors of n.
... breed of woman, unafraid to wear cosmetics and provocative clothing or to be seen smoking or drinking in public.
Flappers had their origins in the Gibson girls[?] of the ...