For any <math> \epsilon > 0 </math> there exists a constant <math> C_{\epsilon} > 0 </math>, such that for every triple of positive integers a, b, c satisfying <math> a + b = c </math> and <math> \gcd(a,b) = 1 </math> we have <math> c < C_{\epsilon} rad(abc)^{1+\epsilon} </math>, where <math> rad(n) </math> is the product of the distinct primedivisors of n.
... density is 1,533.8/km² (3,985.3/mi²). There are 1,784 housing units at an average density of 485.1/km² (1,260.4/mi²). The racial makeup of the town ...