Encyclopedia > Abc Conjecture

  Article Content

Abc Conjecture

The abc conjecture in number theory was first formulated by Oesterlé, Joseph[?] and Masser, David[?] in 1985.

It states:

For any <math> \epsilon > 0 </math> there exists a constant <math> C_{\epsilon} > 0 </math>, such that for every triple of positive integers a, b, c satisfying <math> a + b = c </math> and <math> \gcd(a,b) = 1 </math> we have <math> c < C_{\epsilon} rad(abc)^{1+\epsilon} </math>, where <math> rad(n) </math> is the product of the distinct prime divisors of n.

It is a conjecture and has not yet been proven.

See also:

External references:



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Quadratic formula

... and its proof remain correct if the coefficients a, b and c are complex numbers, or more generally members of any field whose characteristic is not 2. (In a field of ...

 
 
 
This page was created in 55.1 ms